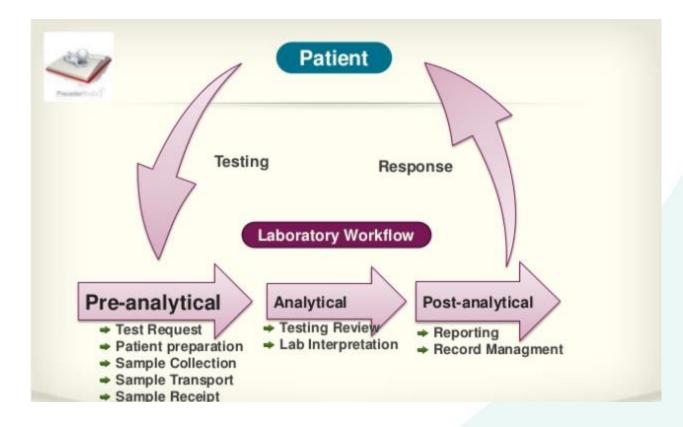
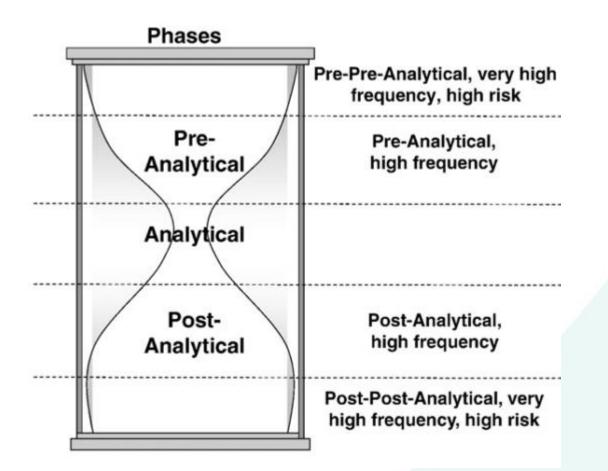
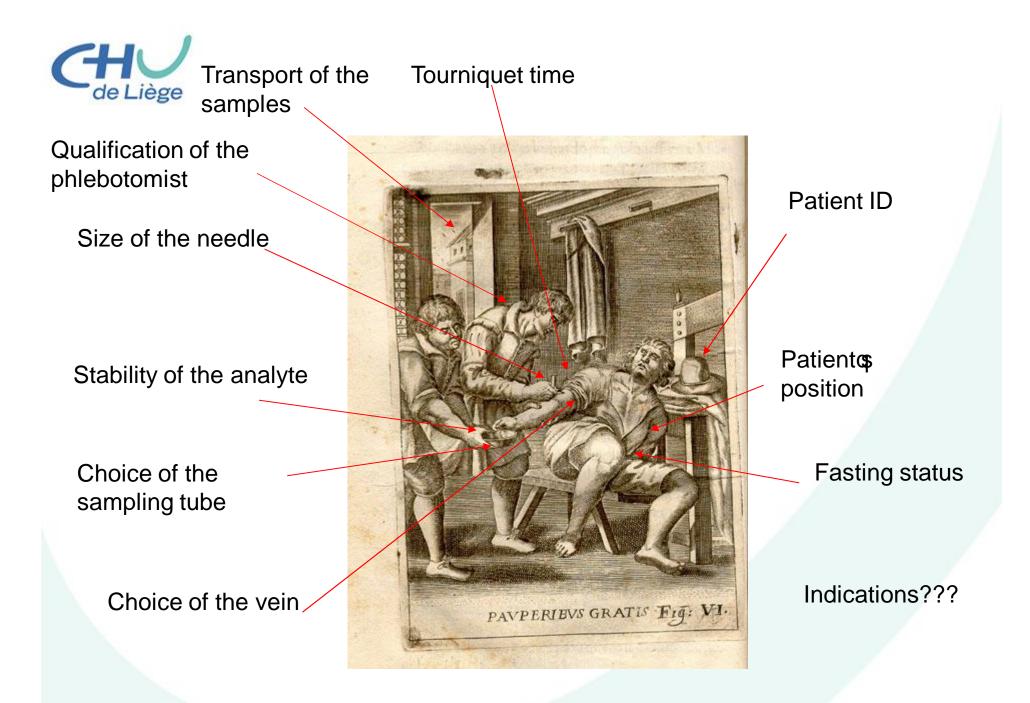


Analytical performance of a biomarker: what the clinician should know


Etienne Cavalier University of Liège, CHU Sart-Tilman, Liège, Belgium



RANSAMTNACE TOD (ATTAC)



Plebani M CCA 2009

The pre-analytical variation

Tests routinely ordered by Nephrologists particularly subject to pre-analytical variation (non exhaustive)

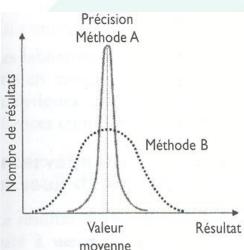
- *Parathormone* (type of sample tube and temperature of conservation).
- *Active renin* (temperature of conservation)
- " Potassium and phosphorus (hemolysis)
- Coagulation factors (incomplete filling and prolonged use of a tourniquet)
- " Aldosterone (posture of the patient)

The analytical variation

The « true » value of an analytical measurement is always unknown (even with a « reference method »)

At best, the result of an analytical process is an estimation of the « true » value

Two types of error impact any analytical result, namely the systematic and the random error


The random error

- "Random error is constituted by the addition of different uncontrolled sources of variation
- Theses numerous and independent sources of variation can have opposite effects, leading to a Gaussian dispersion of the results around the expected %60e+ value.

Evaluation of the random error

- The random error is evaluated by repeating multiple measurements on samples presenting different levels.
- We calculate the mean, the standard deviation and the coefficient of
 variation

The systematic error

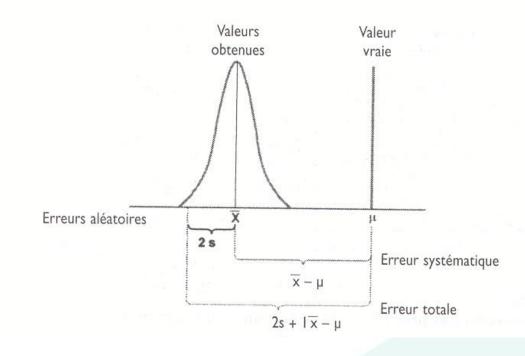
The systematic error represents the constant bias observed between the observed value and the %toue+value.

The systematic error is evaluated by the biais (in %) between the true value and the value found by the method

Nombre de résulta

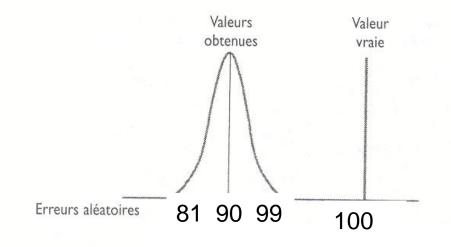
Valeur

vraie

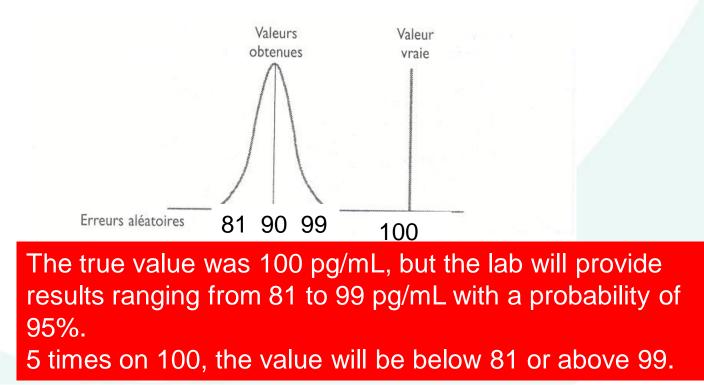

Valeur moyenne

obtenue

The total error


The total error is the combination of the random and systematic error

Exemple


If a PTH method has a CV of 5% and a negative bias of 10%. The lab found that the patientos value was 90 pg/mL:

Exemple

If a PTH method has a CV of 5% and a negative bias of 10%. The lab found that the patientos value was 90 pg/mL:

The biological variation

Biological variation

Biological variation corresponds to the **natural** and **physiological** fluctuation of body fluid constituents around a homeostatic setting point which is specific for each individual.

The biological variation has two components: the **within** and the **between-subject** variation

Evaluation of the biological variation

Recruit group of apparently healthy volunteers

Take a series of samples from each individual at different time-points

Run the analysis in duplicate in one batch and estimate the biological variations by performing a ANOVA.

http://www.westgard.com/biodatabase1.htm

What can we do with biological variation data?

Detemine the Reference Change Value

Define the number of specimens required to estimate the homeostatic set point of a parameter.

Reference Change Value (or Least Significant Change)

- In clinical practice, it is of importance to know if a change between two results in the same patient has significantly occurred
- ["] The percentage above which one can consider a change as biologically significant with 95% confidence is called the RCV (or LSC)
- "The resumed formula to calculate the RCV is RCV = 1.96 X ¿2 X ¿(CV_a²+CV_i²) Á3 x CVi

No. of Specir	No. of Specimens to Estimate True Value in an Individual		
Within 10%	Within 20%	Within 30%	
1	1	1	
1	1	1	
5	2	1	
2	1	1	
3	1	1	
8	2	1	
10	3	1	
5	2	1	
3	1	1	
11	3	1	

Note: N = 17 stable patients treated with maintenance hemodialysis. Concentrations given as mean ± SD or median [IQR]. Abbreviations and definitions: ALP, alkaline phosphatise; CV_a, analytical coefficient of variation; CV_i, intraindividual coefficient of variation; FGF-23, fibroblast growth factor 23; gen, generation; LSC, least significant change (at 95% probability); P1NP, N-terminal propeptide of type 1 procollagen; PTH, parathyroid hormone; TRAP-5B, tartrate-resistant acid phosphatase type 5B.

Cavalier et al, AJKD 2013

Exemple

- " A HD patient presents a PTH at 180 pg/mL (6xUL) and a bAP at 19 µg/mL
- % 8 weeks later, PTH raised to 240 pg/mL (8xUL) and bAP at 24 µg/L
- " Are these changes significant?
- ["] PTH: 180 + ¹ 40% = 252 pg/mL
- ″ bAP: 19 + 23% = 23.4 μg/L

These changes are not significant.

Nb of samples to esimate the true value in an Individual

- " $n=[Z^{*1/4}(CV_A^2+CV_1^2)/D]^2$ where n is the number of samples needed, Z the probability-score and D is the desired percentage of closeness to the homeostatic set-point.

Exemple

- If the intra individual CV of creatinine is 5.3% and the analytical CV is 3% and if we want that a creatinine result to be within 10% of the true homeostatic setpoint with a 95% probability, we need:
- $n = [1.96^{1/3}(3^2+5.3^2)/10]^2 = 2$ samples.

				No. of Specimens to Estimate True Value in an Individual			
Analyte	Value	CV _a (%)	CV _i (%)	LSC (%)		Within 20%	Within 30%
Albumin (g/L)	39.8 ± 3.1	1.3	2.8	9		1	1
Total calcium	2.19 ± 0.17	1.4	2.14	7		1	1
Phosphate (mmol/L)	1.36 ± 0.35	2.6	11.35	32		2	1
Total ALP (UI/L)	89 ± 38	0.9	5.5	16		1	1
Bone ALP (µg/L)	19.0 ± 11.8	4.9	6.8	23		1	1
2nd-gen PTH (pg/mL)	357 [184-461]	2.3	13.8	39		2	1
3rd-gen PTH (pg/mL)	157 [81-234]	4.5	14.9	43		3	1
Intact P1NP (ng/mL)	124 ± 83	4.7	10.5	32		2	1
TRAP-5B (U/L)	5.34 ± 1.93	2.6	8.3	24		1	1
FGF-23 (U/L)	1.678 [770-2.896]	3.5	17.2	48		3	1

Note: N = 17 stable patients treated with maintenance hemodialysis. Concentrations given as mean ± SD or median [IQR]. Abbreviations and definitions: ALP, alkaline phosphatise; CV_a, analytical coefficient of variation; CV_i, intraindividual coefficient of variation; FGF-23, fibroblast growth factor 23; gen, generation; LSC, least significant change (at 95% probability); P1NP, N-terminal propeptide of type 1 procollagen; PTH, parathyroid hormone; TRAP-5B, tartrate-resistant acid phosphatase type 5B.

Cavalier et al, AJKD 2013

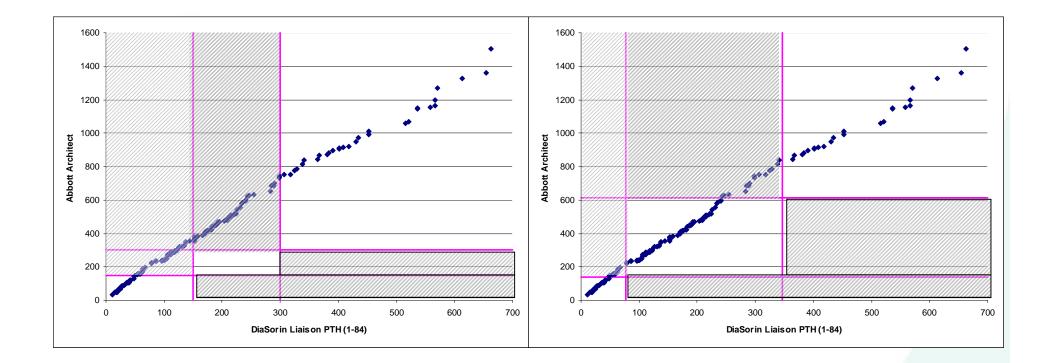
The post-analytical phase

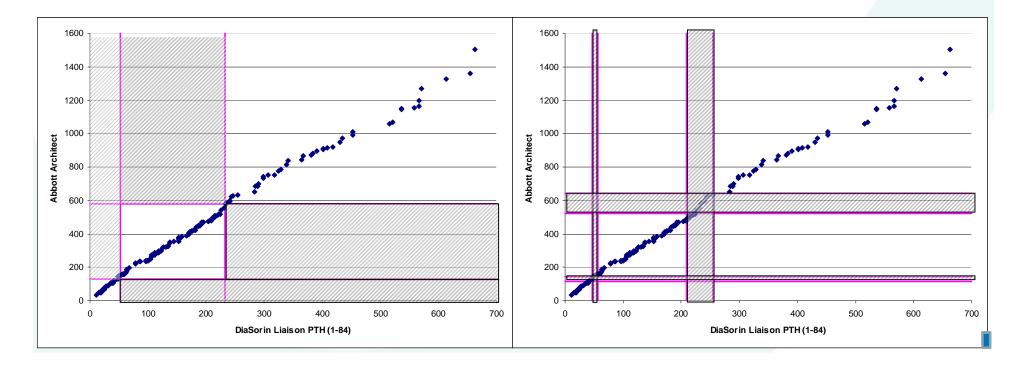
- "Reflect only the population on which they have been obtained (ehnicity, habits, food intakes, sports,õ)
- "Statistically: 5% of healthy subjects will be out of them
- "How should we define the « reference population »: blood donors? Young people?
- Most of labs use the RR provided by manufacturers but they are poorly defined

X2. X9

« the upper reference range of the Laboratory »

HoweverÅ


When establishing reference values for serum PTH, it seems logical to exclude from the reference population any person with a condition potentially leading to an increased PTH concentration. Vitamin D insufficiency is one condition that may increase PTH, but to know whether an apparently healthy individual is vitamin D-insufficient, serum 250HD must be measured. However, vitamin D status has not been taken into account in most published studies on PTH reference values.


Souberbielle JC, Clinical Chemistry, 2005

Methods	Reference range (Manufacturer) (pg/ml)	Lower and Upper Reference limits (95% Confidence – Interval) obtained in our reference population (pg/mL)		
	2 nd generation assays			
Abbott Architect	15.0 - 68.3	16.3 - 64.7		
Beckman Access	12 - <mark>88</mark>	10.1 - 47.4		
DiaSorin N-tact IRMA	13 – <mark>54</mark>	7.2 - 35.7		
DiaSorin Liaison N-tact	17.3 - 72.9	21.3 - 68.2		
Ortho Vitros	7.5 - 53.5	10.8 - 47.5		
Roche Elecsys	15 - 65	13.7 - 50.2		
Scantibodies Total intact PTH	14 - 66	7.8 - 49.7		
Siemens Immulite	12 - 65	5.4 - 57.1		
	3rd generation assays			
DiaSorin Liaison 1-84	5.5 - <mark>38.4</mark>	4.6 - 25.8		
Scantibodies Ca-PTH IRMA	5 - 39	6.8 - 30.8		

Cavalier. NDT 2011

Take-home messages

- What see behind a result? Many variations possible!
- To understand these variations is mandatory to correctly interpret laboratory results
- In any case: contact the lab!!! (1A in the KDIGO)

